Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1302361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699534

RESUMO

Pine wilt disease (PWD) poses a significant threat to forests due to its high infectivity and lethality. The absence of an effective treatment underscores the importance of timely detection and isolation of infected trees for effective prevention and control. While deep learning techniques combined unmanned aerial vehicle (UAV) remote sensing images offer promise for accurate identification of diseased pine trees in their natural environments, they often demand extensive prior professional knowledge and struggle with efficiency. This paper proposes a detection model YOLOv5L-s-SimAM-ASFF, which achieves remarkable precision, maintains a lightweight structure, and facilitates real-time detection of diseased pine trees in UAV RGB images under natural conditions. This is achieved through the integration of the ShuffleNetV2 network, a simple parameter-free attention module known as SimAM, and adaptively spatial feature fusion (ASFF). The model boasts a mean average precision (mAP) of 95.64% and a recall rate of 91.28% in detecting pine wilt diseased trees, while operating at an impressive 95.70 frames per second (FPS). Furthermore, it significantly reduces model size and parameter count compared to the original YOLOv5-Lite. These findings indicate that the proposed model YOLOv5L-s-SimAM-ASFF is most suitable for real-time, high-accuracy, and lightweight detection of PWD-infected trees. This capability is crucial for precise localization and quantification of infected trees, thereby providing valuable guidance for effective management and eradication efforts.

2.
Analyst ; 148(22): 5753-5761, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37842979

RESUMO

Affinity assays allow direct detection of DNA methylation events without requiring a special sequence. However, the signal amplification of these methods heavily depends on nanocatalysts and bioenzymes, making them suffer from low sensitivity. In this work, alkaline phosphatase (ALP)-assisted chemical redox cycling was employed to amplify the sensitivity of fluorescence affinity assays for DNA methylation detection using Ru@SiO2@MnO2 nanocomposites as fluorescent probes. In the ALP-assisted chemical redox cycling reaction system, ALP hydrolyzed 2-phosphate-L-ascorbic acid trisodium salt (AAP) to produce AA, which could reduce MnO2 nanosheets to form Mn2+, making the fluorescence recovery of Ru@SiO2 nanoparticles possible. Meanwhile, AA was oxidized to dehydroascorbic acid (DHA), which was re-reduced by tris(2-carboxyethyl) phosphine (TCEP) to trigger a redox cycling reaction. The constantly generated AA could etch large amounts of MnO2 nanosheets and greatly recover Ru@SiO2 fluorescence, amplifying the signal of the fluorescence assay. Employing the proposed ALP-assisted chemical redox cycling signal amplification strategy, a sensitive affinity assay for DNA methylation detection was achieved using ALP encapsulated liposomes that were linked with the 5mC antibody (Ab) to bind with methylated sites. A detection limit down to 2.9 fM was obtained for DNA methylation detection and a DNA methylation level as low as 0.1% could be distinguished, which was superior to conventional affinity assays. Moreover, the affinity assays could detect DNA methylation more specifically and directly, implying their great potential for the analysis of tumor-specific genes in liquid biopsy.


Assuntos
Fosfatase Alcalina , Metilação de DNA , Fosfatase Alcalina/metabolismo , Fluorescência , Compostos de Manganês , Dióxido de Silício , Óxidos , Oxirredução
3.
Talanta ; 265: 124811, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327662

RESUMO

As a promising biomarker, the level of methylated DNA usually changes in the early stage of the cancer. Ultrasensitive detection of the changes of methylated DNA offers possibility for early diagnosis of cancer. In this work, a tannic acid-accelerated Fenton chemical reaction amplification was firstly proposed for the construction of ultrasensitive fluorescent assay. Tannic acid was used as reductant to accelerate Fenton reaction procedure through the conversion of Fe3+/Fe2+, generating hydroxyl radicals (·OH) continuously. The produced ·OH oxidized massive non-fluorescent terephthalic acid (TA) to fluorescent-emitting hydroxy terephthalic acid (TAOH). In this way, the fluorescent signal could be greatly enhanced and the sensitivity was improved almost 116 times. The proposed signal amplification strategy was further applied to detect of DNA methylation with the assistance of liposome encapsulated with tannic-Fe3+ complexes. The methylated DNA was firstly captured through the hybridization with its complementary DNA that were pre-modified in the 96-well plate via the combination between streptavidin (SA) and biotin. Then, 5 mC antibody on the surface of liposomes specially recognized and combined with methylation sites, which brought large amount of tannic-Fe3+ complexes to participate Fenton reaction. The fluorescence of generated TAOH was depended on the concentration of methylated DNA. The assay showed good analytical performance for methylated DNA with a limit of detection (LOD) of 1.4 fM. It's believed that tannic acid-accelerated Fenton chemical reaction amplification strategy provides a promising platform for ultrasensitive fluorescent detection of low abundant biomarkers.


Assuntos
Técnicas Biossensoriais , Ácidos Ftálicos , Metilação de DNA , DNA/química , Limite de Detecção , Taninos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
4.
J Fluoresc ; 33(4): 1505-1513, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36763295

RESUMO

Changes in Sn2+ and glycine levels are relevant to many important physiological procedures in human health. However, investigation of their physiological functions is limited because few versatile methods towards Sn2+ and glycine detection have been developed. In this work, a fluorescence turn on-off-on strategy was firstly constructed for rapid and sensitive detection of Sn2+ and glycine through the specific binding between Sn2+ and glycine. Carbon nanodots (CDs) with a quantum yield of 19.5% were synthesized by utilizing inner film of waste eggshell as carbon source and employed as fluorescent probe. In the presence of Sn2+, the fluorescence of CDs was quenched by Sn2+ via the primary inner filter effect (IFE). However, the binding between Sn2+ and glycine prevented the IFE between Sn2+ and CDs, resulting in fluorescence recovery of CDs. Under optimized conditions, the fluorescent response of CDs displayed good linear relationships with the concentrations of Sn2+ in the range of 10-200 µM and 200-5000 µM, and the limit of detection (LOD) was 2.4 µM. For glycine detection, a good linear relationship was obtained in the concentration range of 5-1000 µM with a low LOD down to 0.76 µM. Moreover, the practicability of the assay was also demonstrated by measuring glycine content in human serum samples. This work provides an economical, green and fast method for biological analysis of Sn2+ and glycine.


Assuntos
Carbono , Pontos Quânticos , Animais , Humanos , Carbono/química , Glicina , Casca de Ovo , Corantes Fluorescentes/química , Limite de Detecção , Espectrometria de Fluorescência , Pontos Quânticos/química
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121724, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952589

RESUMO

Glutathione (GSH)-switched fluorescent assays have appealed much attention due to rapid signal changes of fluorescent probes. However, exposure to exterior environment of fluorescent probe causes photobleaching and premature leakage, leading to low sensitivity and poor photostability. Herein, luminescent SiO2 nanoparticles encapsulated with Ru(bpy)32+ (Ru@SiO2) were designed and synthesized as fluorescent probe to construct a GSH-switched fluorescent assay. The encapsulation of Ru(bpy)32+ in the SiO2 nanoparticles could effectively prevent the leakage of Ru(bpy)32+ molecules, improving the photostability of probe. The fluorescence of Ru@SiO2 nanoparticles was quenched by coating MnO2 nanoparticles on Ru@SiO2 surface (Ru@SiO2@MnO2 nanocomposites) through an in situ growth approach, which reduced background of the assay. The MnO2 nanoparticles not only further inhibited the leakage of Ru(bpy)32+ molecules, but also could serve as a recognition unit of GSH. In the presence of GSH, the MnO2 nanoparticles on the surface of Ru@SiO2 nanoparticles were reduced to Mn2+, resulting the fluorescence recovery of Ru@SiO2 nanoparticles. Thus, a signal-on fluorescent strategy was constructed for GSH detection. The assay displayed good analytical performance for GSH detection with a low detection limit of 16.2 nM due to excellent fluorescence quenching ability of MnO2 nanoparticles and special role of Ru@SiO2 nanoparticles to block probe leakage. The proposed assay was also applied to measure GSH levels in human serum samples. This work paves a new way to detect GSH with high sensitivity.


Assuntos
Compostos de Manganês , Nanosferas , Corantes Fluorescentes , Glutationa , Humanos , Óxidos/farmacologia , Dióxido de Silício
6.
Analyst ; 146(23): 7250-7256, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34730569

RESUMO

Herein, a green, economical, and waste-utilization approach is reported for the synthesis of water-soluble carbon nanodots (C-Dots) with a high fluorescence quantum yield of 19.5%. As a common protein-rich waste, eggshell membrane was selected as a cost-effective and ideal precursor to prepare C-Dots using the microwave method. The as-prepared C-Dots showed a maximum emission at 375 nm with an excitation wavelength at 235 nm. The fluorescent C-Dots were adopted as a sensitive probe for the rapid detection of Hg2+ and glutathione (GSH) based on the fluorescence off and on (turn-off-on) strategy. This was ascribed to the fact that Hg2+ could effectively quench the fluorescence of the C-Dots and GSH was able to prevent fluorescence quenching owing to the specific binding between Hg2+ and GSH. The designed method exhibited a high sensitivity and selectivity towards the detection of Hg2+ and GSH. Under the optimized conditions, the method showed a good linear relationship with Hg2+ concentration in the range from 100 nM to 50 µM with a detection limit of 32.0 nM. For GSH detection, it displayed a linear range from 50 nM to 10 µM with a detection limit of 9.8 nM. Moreover, this method was successfully applied to detect GSH in human serum samples. The eggshell derived fluorescent C-Dots pave the way for economical environmental and biological analyses.


Assuntos
Mercúrio , Pontos Quânticos , Animais , Carbono , Galinhas , Casca de Ovo , Corantes Fluorescentes , Glutationa , Humanos , Limite de Detecção , Espectrometria de Fluorescência
7.
Int J Dev Neurosci ; 81(2): 191-199, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33421197

RESUMO

Polycystic kidney disease with Tuberous sclerosis is a disease caused by the deletions of the TSC2-PKD1 gene. The disease is rarely reported and the characterized manifestation is severe polycystic kidney growth. The diagnosis can be made by molecular analysis. We report the first case of PKDTS discovered in infancy in China with typical neurological and renal manifestations. The patient has infantile spasm, polycystic kidney, skin damage, hypertension, and hematuria after infection. After effective treatment of Rapamycin, the seizures were completely controlled. There was not been any renal function damage in the patient. At the same time, we review the related literature and further elaborate on the variety of clinical manifestations, treatment, and prognosis.


Assuntos
Deleção de Genes , Rim Policístico Autossômico Recessivo/genética , Espasmos Infantis/genética , Esclerose Tuberosa/genética , Humanos , Lactente , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Espasmos Infantis/diagnóstico por imagem , Esclerose Tuberosa/diagnóstico por imagem , Ultrassonografia
8.
J Mol Neurosci ; 71(2): 245-251, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32617873

RESUMO

Metachromatic leukodystrophy(MLD) is an autosomal recessive hereditary neurodegenerative lysosomal storage disorder caused by the mutations in arylsulfatase A gene (ARSA), which results in the deficiency of ARSA enzyme. The common clinical characteristics of MLD are abnormal gait, and then gradually appears ataxia, spastic quadriplegia, optic atrophy, cortical blindness, and dementia. We describe two patients in China who were diagnosed with MLD and find that the four ARSA gene mutations (c.1115G>A, c.302G>T, c.893 G> T, and c.302G>T) are associated with MLD, in which c.893 G>T and c.302G>T are novel mutations by gene sequence and clinical manifestations, to further understand the relationship between MLD and ARSA gene.


Assuntos
Povo Asiático/genética , Cerebrosídeo Sulfatase/genética , Leucodistrofia Metacromática/genética , Mutação de Sentido Incorreto , Transplante de Medula Óssea , Pré-Escolar , Progressão da Doença , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Leucodistrofia Metacromática/etnologia , Leucodistrofia Metacromática/terapia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...